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ABSTRACT
We describe a compression method for floating-point astronomical images that gives compres-

sion ratios of 6 — 10 while still preserving the scientifically important information in the image.
The pixel values are first preprocessed by quantizing them into scaled integer intensity levels,
which removes some of the uncompressible noise in the image. The integers are then losslessly
compressed using the fast and efficient Rice algorithm and stored in a portable FITS format
file. Quantizing an image more coarsely gives greater image compression, but it also increases
the noise and degrades the precision of the photometric and astrometric measurements in the
quantized image. Dithering the pixel values during the quantization process greatly improves
the precision of measurements in the more coarsely quantized images. We perform a series of
experiments on both synthetic and real astronomical CCD images to quantitatively demonstrate
that the magnitudes and positions of stars in the quantized images can be measured with the
predicted amount of precision. In order to encourage wider use of these image compression meth-
ods, we have made available a pair of general-purpose image compression programs, called fpack
and funpack, which can be used to compress any FITS format image.

Subject headings: image compression, FITS format

1. Introduction

The exponential growth in the volume of as-
tronornical data being generated from ever larger
format imaging detectors continues to drive up
the data handling costs of both large and small
telescope projects. The cost of archiving the im-
ages is only one part of the problem. A typical
observational work flow involves a long cascade
of temporary and permanent copies of the data
replicated from observatory to data processing fa-
cility to deep storage site to science archive cen-

ter to virtual observatory portal to multiple end
users. Each science image provided as input to
• pipeline will produce several output images as
• result of processing operations such as resam-
pling onto a standard grid, co-adding, mosaicking,
and any analysis steps specific to the science pro-
gram. The problem is one of throughput — not just
storage — of the total system data flow. :Network
transmission costs also rival or exceed the cost of
storage media and can be breathtakingly large for
spacecraft or remote mountaintops. Often there is



an upper limit to the network bandwidth at any
price. Making effective use of the available image
compression technologies is an important compo-
nent in dealing with these data handling costs.

Lossy data compression techniques, which do
not exactly preserve each image pixel value but
do still preserve the required scientific information
content of the image, are already used by many
projects. To cite just a few examples, the Kepler
space telescope project (Caldwell et al. 2010) uses
a lossy image quantization method to reduce the
data volume to fit within the limited bandwidth
from its heliocentric orbit, the GONG helioseis-
mology project (Harvey et al. 1996; Goodrich et
al. 2004) relies on lossy compression to transmit
images from its telescopes deployed at six locations
worldwide, and the NOAO High-Performance
Pipeline (Valdes & Swaters 2007) includes a final
quantization step from an internal floating-point
representation to the final integer archive data
products to achieve greater image compression.

In a previous contribution (Pence, Seaman, &
White 2009, hereafter, Paper I), we demonstrated
that the maximum possible lossless compression
ratio for integer format astronomical images is de-
termined by the amount of noise in the background
pixels (i.e., the "sky") in the image. The noise in
astronomical images often has 2 main components:
Poissonian-distributed photon noise and Gaussian
distributed "read-out" noise. If each pixel is rep-
resented by BITPIX bits (usually 16 or 32 bits)
and if, on average, Nbits of those bits are filled
with uncompressible, randomly fluctuating noise,
then the maximum theoretical compression ratio
for that image is given by BITPIX / Nbits . In
practice, no compression algorithm is 100% effi-
cient, so the actual maximum compression ratio,
R, is given by

R = BITPIX/(IVbits + K)	 (1)

where K is an empirical measure of the efficiency
(or overhead) of the algorithm in units of bits
per pixel. We compared several lossless compres-
sion algorithms and found that the Rice algorithm
(Rice, Yeh, & Miller 1993; White & Becker 1998),
which has a small K value of about 1.2 bits per
pixel, provided the best combination of speed and
compression efficiency.

The relationship between noise and entropy in
images is discussed more fully in the appendix of

Paper I, based on the seminal work by Shannon
(1948), where we showed that the "equivalent"
number of noise bits per pixel in an image can
be calculated from the noise (0') of the pixels in
background regions of the image such that

Nbits = 1092(0' 12) = 1092(0') + 1.792	 (2)

which, when combined with equation 1, gives

R = BITPIX/(109 2 (0') + 1.792 + K)	 (3)

In this current article we extend the previous
analysis of integer images to study compression
techniques for astronomical images in floating-
point format. In the cases we are mainly con-
cerned with here, these images originally had in-
teger pixel values, but were converted into 32-bit
IEEE floating-point format during the calibration
processing (e.g., bias subtraction, flat-fielding, ab-
solute flux calibration, etc.). Equation 3 applies
to floating point images as well as integer im-
ages, however typical floating-point astronomical
images contain so much noise that it is impossible
to achieve significant amounts of compression with
lossless algorithms (often less than a factor of 2).
One explanation for this excess noise is that a 32-
bit IEEE floating-point number can express 7 deci-
mal places of precision but this usually far exceeds
the inherent precision of individual image pixel
values. As a result many of the least significant
bits in the mantissa of the floating-point pixel val-
ues are effectively filled with quasi-random noise
which is inherently uncompressible. While there
are counter-examples of floating-point FITS arrays
that have very little noise and can be losslessly
compressed effectively (e.g., generated by theoret-
ical simulations), these are not typical of the types
of floating-point images commonly found in large
astronomical data archives and are not the subject
of this article.

There are many published articles on loss-
less floating-point data compression schemes (see
Lindstrom & Isenburg 2006, and reference therein
as recent examples) but it is beyond the scope here
to summarize them in detail. The main point is
that ultimately all of these lossless compression
techniques face the same Shannon entropy limit,
and the only way to achieve greater compression
of noisy floating-point images is to use techniques
that discard some of the noise. These methods



are technically "lossy" because they do not ex-
actly preserve the pixel values, however, if only
noise is discarded, then the compression can still
be considered lossless from a scientific standpoint
because all the useful information is retained.

In the remainder of this article we describe a
lossy compression technique for floating-point as-
tronomical images that provides an optimal com-
bination of speed, compression ratio, and preser-
vation of information content. It is faster and
achieves much higher compression than generic
lossless file compression algorithms like GZIP
(Gailly & Adler 1992), yet it produces no sig-
nificant loss of information in the image when
used appropriately. In §2 we describe in detail
the quantization and compression techniques that
have been implemented in our publicly available
fpack and funpack image compression utility pro-
grams. Then in §3 we describe the results of
several experiments that demonstrate that astro-
nomical floating-point images can be compressed
by up to a factor of 10 without significant loss
of astrometric or photometric precision. Finally,
^4 summarizes the results and gives recommenda-
tions for achieving the best compression of astro-
nomical images.

2. Quantization and Compression Meth-
ods

The most common lossy compression technique
for floating-point images is to preprocess the pixel
values by quantizing them into a smaller set of dis-
crete values prior to applying a lossless compres-
sion algorithm. In the simplest case, the values
are rounded into a grid of equally spaced floating-
point levels. This reduces the number of different
bit patterns in the image pixels (i.e., reduces the
entropy in the image) and improves the efficiency
of file compression programs like GZIP which ac-
cumulate a dictionary of the most common bit pat-
terns in the file and represent them using a shorter
code in the compressed file. Watson (2002) ap-
plied an analogous technique to integer images.
In order to accommodate compression algorithms,
like Rice, that only operate on integer arrays, the
quantized floating-point values are usually repre-
sented by scaled integers so that the image pixel

values are approximated by

FloatValue = ScaleFactorx IntegerValue+ZeroPoint
(4)

Note that this integer scaling technique was the
only way to represent floating-point images in the
FITS data format (Hanisch et al. 2001) before
support for the IEEE floating-point format was
officially added in 1990.

As an aside, there are many articles in the liter-
ature (e.g., Nieto-Santisteban et al. 1999; Gowen
& Smith 2003; Nicula, Berghmans, & Hochedez
2005; Seaman, White, & Pence 2009; Bernstein et
al. 2010) that advocate using a square root scal-
ing function, in part because the Poissonian shot
noise scales by this same factor. What is usually
not stated in these studies is that practically the
same increase in compression that is obtained af-
ter applying a square root scaling function can be
obtained by linearly scaling all the pixels in the
image by the same factor as is applied to the back-
ground pixels during the square root scaling. Since
the compression ratio is determined mainly by the
noise in the background areas of the image (from
equation 3), the amount of scaling that is applied
to the relatively infrequent bright pixels usually
makes little difference to the overall compression
ratio of the image. In experiments on simulated
astronomical images, Bernstein et al. (2010) found
that using square -root scaling only produced sig-
nificantly better compression than linear scaling
when more than 10% of the image pixels are af-
fected by isolated bright objects or cosmic rays.

2.1. FITS Tiled Image Compression Con-
vention

White & Greenfield (1999) developed the tech-
nique that forms the basis of the FITS tiled-image
compression format that is used here with a few
new refinements. Each row of the image (or in
principle, any other rectangular `tile' in the image)
is compressed separately to provide fast random
access to individual sections of an image without
having to uncompress the entire image. In the
case of floating-point images, the pixel values are
converted to integers with a scale factor that, by
default, is proportional to the measured amount
of noise in that tile.

The noise in each the of the image is calcu-
lated using a robust algorithm that was originally



developed to measure the signal-to-noise in spec-
troscopic data (Stoehr et al. 2007). In particular,
we use their third order "Median Absolute Dif-
ference" (MAD) formula to compute the standard
deviation of the pixel values:

o- = 0.6052 x med i a n ( — Xi-2 + 2x i — x i+ 2 ) (5)

where i is the vector index of the pixel within each
row of the image, and x i is the value of the ith

pixel. The median value is computed over all the
pixels in each row of the image. In the limiting
case where the pixel values have a Gaussian dis-
tribution, this formula converges to same value as
the Standard Deviation of the pixels. Note that
this formula is not affected by linear intensity gra-
dients across the image (which are canceled out by
the first and third terms), and the use of the me-
dian makes the result insensitive to the presence
of outlying large pixel values. For example, if one
randomly sets 5% of the pixels in an image with
Gaussian distributed noise to very large values to
simulate the effects of cosmic rays, then the MAD
noise estimate only increases by about 20%.

Once the noise level has been calculated, the
floating-point pixels are quantized into scaled in-
tegers where the quantized levels are spaced at
some user-specified fraction, q, of the noise, so
that the spacing is given by Q /q. Normalizing the
quantization spacing to a is a convenient way to
produce similar quality compressed images regard-
less of the intrinsic noise level in the image. The
scaled integers are then compressed using the de-
fault Rice algorithm, or one of the other optional
compression algorithms. Finally, the compressed
stream of bytes is stored in a FITS binary table
structure as defined in the FITS tiled image com-
pression convention (Pence et al. 2000; Seaman et
al. 2007) .

Since the noise a in the array of quantized in-
tegers is simply equal to q, the expected image
compression ratio, from equation 3. is given by

R = BITPIX/(109 2 (q) -4- 1.792 ± K)	 (6)

For example, quantizing an image using q values of
1 or 4 will produce compression ratios of about 10
or 6.4, respectively, when using the Rice algorithm
that has K ^_ 1.2. In most cases, the compression
ratio does not depend very much on the distri-
bution of objects or structures within the image

itself. Note that this formula tends to break down
for q values much less than 1 because many com-
pression algorithms become less effective on very
low entropy images and because the size of the
FITS file header, which remains uncompressed,
becomes relatively more significant.

One important caveat with the use of this quan-
tizing method is that if the noise level in the image
is significantly overestimated for some reason (for
our purposes it is generally sufficient if it is accu-
rate to within about a factor of 2), then the im-
age may be inadvertently quantized more coarsely
than expected for a given q value, thus possibly
causing a loss of information in the compressed
image. Circumstances where the MAD algorithm
could overestimate the noise include the following:

If a large fraction of the pixels in an im-
age tile are covered by bright objects and
have values (and noise) which is many times
greater than in the fainter pixels, then the
MAD noise estimate will be representative
of those bright pixels and not that of the
fainter "background" pixels., This may cause
the fainter pixels to be more coarsely quan-
tized than would be desired.

If a significant amount of the pixel-to-pixel
variation in the image is real and not just
due to noise, (e.g., if there are large pixel-
to-pixel variations in the detector sensitiv-
ity, or if the observed object contains signifi-
cant structure on a pixel size scale), then the
noise level may be overestimated.

If the noise in an image is anti-correlated
between adjacent pixels (e.g., after certain
types of image convolutions) then the noise
will be overestimated. Note, however, that
equation 5 is a function only of the values in
every other pixel in each row of the image, so
the anti-correlation scale length must extend
over at least 2 pixels to affect the MAD noise
estimate.

Our fpack compression program (see X2.4) offers
several options for dealing with this issue. One
simple method is to just compress the image us-
ing a larger q value to compensate for the pos-
sible -\-,IAD noise overestimate, although this can
negatively affect the overall compression ratio of



the image. Another option in cases where only
a small fraction of the rows in an image might
be affected is to compress the entire image as a
single tile, rather than using the default row-by-
row tiling pattern, so that the MAD noise estimate
then more accurately reflects the noise in the back-
ground regions of the image as a whole. Finally,
fpack users do not need to rely on the MAD noise
estimate at all, and instead can directly specify
the desired spacing between the quantization lev-
els. This latter option is especially appropriate
for projects that generate large amounts of rela-
tively homogeneous images because it ensures that
all the images will be compressed using the same
quantization factor. This method has the added
advantage that it will improve the compression
speed because it is not necessary to compute the
MAD noise value in this case.

2.2. Benefits of Dithering

The effects of linear quantization are naturally
greater in the fainter areas of an image than for the
brighter pixels where the Poissonian uncertainty
of the photon counts can be much larger than the
quantized spacing. Measurement of the local `sky'
background around the image of a star or galaxy
can be especially vulnerable to the effects of quan-
tization, in part because it is usually necessary to
identify and exclude pixels that are affected by
other objects or by defects in the detector. If an
image is coarsely quantized then most of the back-
ground pixels will have a value equal to one of the 2
quantization levels that bracket the true sky level.
Any algorithm for rejecting outlying contaminated
pixels will tend to reject more of the pixels that
have the value that is further from the true sky
level, and thus the sky level that is derived from
the remaining pixels will tend to be biased towards
the value of the quantized level that lies closest to
the true sky level.

The issue of detecting small amplitude signals
in a. quantized system is a well-studied problem
in engineering and communications fields where
the phenomenon is known as "stochastic reso-
nance". The somewhat counter-intuitive solution
for improving the signal-to-noise of measurements
of quantized data is to add a moderate amount
of noise into the system. When applied to im-
ages, this technique is commonly called "dither-
ing". Widrow & Kollar (2008) devote 2 chapters of

their book to the theory and practice of dithering
and recommend using a clever "subtractive dither-
ing" technique, first proposed by Roberts (1962).
This technique overcomes the drawback of having
to add noise to the image: a dither is added to the
quantizer input, and the same dither is subtracted
again from the quantizer output. The dither thus
behaves as a catalyst which makes the process
work better but does not appear in the output im-
age. We have adopted this technique when quan-
tizing floating-point images by adding a random
dither, Ri, with a value uniformly distributed be-
tween 0 and 1 during the scaling process,

h = round (Fi /ScaleFactor + Ri — 0.5) (7)

where Fi is the original floating-point value and 1i
is the the quantized integer value. The interest-
ing trick that distinguishes subtractive dithering
from ordinary dithering methods is that exactly
the same random dither value is subtracted when
converting back to the quantized float value:

Fi = (Ii + 0.5 — Ri) x ScaleFactor 	 (8)

The net effect of this subtractive dithering oper-
ation is to shift the entire grid of linearly spaced
intensity levels up or down by a random amount
on a pixel by pixel basis. It should be noted that
the dithered values are uniformly distributed be-
tween the quantized levels in this implementation.
One possible future enhancement may be to use a
triangular or Gaussian dither (Widrow & Kollar
2008) which may more closely replicate the actual
distribution of pixel values in the image.

In order to use this subtractive dithering
method it is necessary to define a specific pseudo
random number generator (PRNG) algorithm for
use by both the compressor and the uncompres-
sor so that the same predictable sequence of ran-
dom numbers is used in both cases. We adopted
the PRNG algorithm described by Park & Miller
(1988) which has been shown to produce statis-
tically independent random numbers uniformly
distributed between 0 and 1. However, for prag-
matic reasons we do not compute a unique random
number for every single image pixel because (a)
it would add significant computational overhead
relative to the very efficient Rice compression al-
gorithm, and (b) true randomness is not required
for this purpose since even crude dithering pat-
terns would still help to mitigate the measurement



biases in quantized images. Our compromise so-
lution is to calculate a look-up-table of 10000 ran-
dom numbers using the above mentioned PRNG,
and then repeatedly recycle through this LUT
when calculating the amount of dither for each
pixel in the image. As a precaution against in-
troducing regular cyclical noise patterns into the
image, a pseudo random starting offset is com-
puted each time when recycling through the LUT.
Finally, 1 out of a possible 10000 initial seed val-
ues for the entire dithering process is computed
based on the system clock time (or optionally the
checksum of the first row of pixel values in the
image) to ensure that the same dithering pattern
is not used in every image. This initial seed value
is stored in the header of the compressed image
for reuse when uncompressing the image.

2.3. Quantization Noise

While quantization reduces the entropy in the
representation of the pixel values (thus improv-
ing the image compression ratio), any quantization
operation, even with subtractive dithering, modi-
fies the pixel values and thus inherently increases
the RMS noise in the pixel-to-pixel variations in
the image by an amount given by:

aq = as + 0 2 /12	 (9)

where the total variance aq in the quantized im-
age is the quadrature sum of the variance coin
the original image plus the quantization noise vari-
ance, and where A is the intensity spacing between
the quantized levels. The factor 1/12 comes from
the variance of a uniform random distribution with
unit width (Janesick 2001, also see the appendix
to Paper 1). Substituting A = a0 /q, the fractional
increase in the noise caused by quantizing the im-
age can be expressed as

(7q/CO = 1 + 1/(12g2)	 ( 10)

Figure 1 shows how both the fractional noise ra-
tio (from equation 10) and the compression ratio
(from equation 6) depend on q. To foreshadow the
results of the experiments that will be described
in §3, this figure shows that q values in the range
of 4 to I provide a good combination of high com-
pression ratio with relatively little added noise.

It should be cautioned that if a floating-
point image is repeatedly compressed and uncom-
pressed, then the cumulative quantization noise

0.5

.75

q =

1

1.5
2

86 4 3

10	 15

Compression Ratio (R)

Fig. l.— Relationship between the compression
ratio and the fractional increase in the background
noise, for a range of q quantization parameter val-
ues.

will be given by

°'g lao = V'I + N/(12g2 )	 ( 11)

where N is the number of compression and uncom-
pression cycles. (This assumes that the dithering
is re-randomized during each cycle, which is al-
ways the case in our implementation of the sub-
tractive dithering algorithm). The amplitude of
this effect depends strongly on the q value. To
put this in practical terms, an image can be com-
pressed and uncompressed at least 16 times using
q > 4 before the noise would increase to the same
level equivalent to compressing the image once
with q = 1. But if the image is compressed multi-
ple times using q = 1, the noise would increase to
scientifically unacceptable levels after just a few
cycles. Ideally, an image should only be com-
pressed once, and then all the subsequent data
analysis should be performed directly on the tile-
compressed FITS file. If the software cannot read
the compressed format directly, then it should op-
erate on an uncompressed version of the original
compressed file, which then should not be recom-
pressed.
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2.4. (pack and funpack Compression Util-
ity Programs

3.1. Data Model and Measurement Meth-
ods

In order to make the image quantization and
compression techniques that are described in the
previous sections more widely available to the
astronomical community, we have developed a
pair of general purpose utility programs, called
fpack and funpack (Seaman et al. 2007), which
can be used to compress and uncompress any
FITS image, in integer or floating-point format.
These utilities rely on the underlying CFITSIO
library (Pence 1999) to perform the quantiza-
tion and compression operations. The fpack
and funpack utility programs were used in the
experiments that are described in the follow-
ing sections to quantize and compress the im-
ages. Further information about fpack and fun-
pack is available from the HEASARC web site at
http://heasarc.gsfc.nasa.gov/fitsio/fpack/.

3. Experiments on Quantized Images

In this section we present the results of experi-
ments designed to show how the measurements of
objects in an image are affected as the image is
quantized by varying degrees. In particular, we
will verify that the noise in the image increases as
a function of q by the amount predicted by equa-
tion 10, and more significantly, that the statisti-
cal errors on the magnitude and position measure-
ments of faint objects in an image, which are lim-
ited mainly by the background noise, also increase
by a similar factor. These results will provide gen-
eral guidelines for achieving the greatest amount
of image compression while still preserving the re-
quired level of scientific precision in the image.

Section 3.1 describes the method of construct-
ing the simulated CCD images that are used in
the first 2 experiments. The first experiment, in
§3.2, examines how quantization affects the uncer-
tainties of measurements of single star images, and
the second experiment, in §3.3, examines the case
where many quantized images are added together
to detect sources far below the detection threshold
of a single image. Finally, the third experiment,
in §3.4, is performed on a set of actual astronomi-
cal images to verify the results obtained from the
synthetic images.

In order to determine how quantization affects
the precision of measurements of objects in an im-
age, we generated a large sample of realistic CCD
star images with known input positions and mag-
nitudes. This allows us to precisely calculate the
errors on the measured positions and magnitudes
in the quantized images. All the stars have circu-
lar Gaussian profiles with a = 1.0 and FWHM =
2.35 pixels. This is typical of the spatial resolution
commonly found in astronomical CCD images and
is adequate to avoid the difficulties when analyz-
ing spatially undersampled images. The central
location of the star images, relative to the pixel
grid, was varied so as to average out any subtle
biases in the subsequent star detection and mea-
surement steps that might depend on the exact
position. The total integrated flux in the stars cov-
ered a range of 10 magnitudes (a factor of 10000
in intensity) in 0.5 magnitude increments. Finally,
the sky background was simulated by adding 1000
counts to each pixel.

Poissonian-distributed shot noise and Gaussian
distributed "read-out" noise was then added to
each of these star images to simulate real CCD
images. The shot noise in each pixel was ran-
domly calculated using a a equal to the square
root of that pixel value (which implicitly assumes
that the "gain" of the simulated CCD has been
set to 1 electron per analog-to-digital readout
count), and the readout noise was calculated us-
ing a = 10. The read-out noise in these images
is relatively small compared to the shot noise in
the sky background, which is usually the case
for real astronomical CCD images that have a
moderately bright background level. The total
noise in the background areas of these images has

= 1000 + 10 2 = 33.2. Different starting ran-
dom seed values were used so that the actual noise
distribution varies in every image.

The widely used SExtractor source extraction
program (Bertin & Arnouts 1996) was employed
to objectively detect and measure the position and
magnitude of the stars in these simulated, noisy
CCD images. SExtractor calculated the positions
(given by the XIMAGE and YIMAGE output
parameters) from the flux-weighted centroid of all
the pixels in each star image above an empirically

7



determined flux detection threshold. The total
magnitude of each star (given by the MAG-APER
parameter) was measured within a 7-pixel diame-
ter aperture (i.e., out to 3.5 a of the Gaussian pro-
file) around the centroid position. We calculated
the actual errors on these measurements from the
differences between the known input position and
flux of each star in the synthetic image. For ref-
erence, the faintest stars that SExtractor could
reliably detect in these images contained about
1000 net counts, which is coincidentally equal to
the mean sky counts in each pixel. We arbitrarily
set the zero point of the instrumental magnitude
scale,

m = —2.5log(flux) + ZeroPoint	 (12)

so that these faintest detected stars have a mag-
nitude of 20.0.

We repeated the SExtractor measurements of
the simulated CCD images after quantizing and
compressing each image with fpack using q val-
ues ranging from 8 to 0.25, both with and with-
out the subtractive dithering option. Since the
SExtractor program cannot directly read images
in the compressed FITS format, it was necessary
to convert them back into the standard FITS im-
age format using funpack (but the pixel values
remain quantized of course). In the case where
dithering was not applied, we also selected the
option to compress the entire image as a single
large tile so that all the pixels are quantized into
the same fixed grid of intensity values. If we had
used the default row-by-row tiling option instead,
it effectively would have introduced some dither-
ing of the quantized levels between adjacent rows,
and the results would be intermediate between the
dithered and non-dithered cases presented below.

Figure 2 shows the dramatic effect that subtrac-
tive dithering has on the histogram of the pixel
values in a q = I quantized image; the dithered
image histogram is nearly identical to the that of
the original image, whereas the non-dithered his-
togram clearly shows the coarse intensity binning.
Without dithering, the image breaks up into dis-
crete "bands" of constant intensity which makes it
more difficult to detect faint features in the image.
This effect is shown in Figure 3, (using an even
more coarsely quantized q = 0.5 image to enhance
the effect), where the majority of the background
pixels all have the same (medium gray) intensity

900	 950	 1000	 1050	 1100

Pixel Value

Fig. 2.— Histograms of the pixel intensity dis-
tribution in one of our test images which demon-
strates the beneficial effects of subtractive dither-
ing when quantizing the image with q = 1. When
dithering is applied (the finely stepped histogram),
the pixel distribution closely matches that in the
original image (the continuous curve). When
dithering is not applied (the coarsely stepped his-
togram) then subtle gradations in image intensity
are lost.

Fig. 3.— Images of a pair of faint (m = 20) ar-
tificial stars (left panel) and the same image after
quantizing the image with q = 0.5 with dither-
ing (middle panel) and without dithering (right
panel). Without dithering, the background breaks
up into broad patches of constant intensity level,
and the star images become harder to detect.
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value.

3.2. Experiment 1: Single Images

In this first experiment, we examine how the
uncertainties of the photometric and astrometric
measurements of individual stars depend on the
q quantization factor. To measure this effect, we
computed the Standard Deviation of the magni-
tude and position errors (i.e., the value computed
by SExtractor minus the known input magnitude
or position value) for 6250 simulated star images
at each 0.5 magnitude increment. Figure 4 shows
how the magnitude uncertainties decrease as the
brightness of the star increases (towards the right).
The lower, thicker line in the figure was derived
from the original, unquantized images and shows
that the statistical uncertainty on the magnitudes
decreases from a = 0.23 for the faintest detectable
stars (with m = 20), to a = 0.018 for stars that
are 3 magnitudes brighter. The line has a slope
close to 1.0 (in log - log coordinates) as expected
in the limiting case where the noise is dominated
by the sky, and hence the signal-to-noise ratio of
the measurement increases in direct proportion to
the signal.

The other 3 lines in Figure 4 were derived from
the same images after they were first quantized
and compressed with successively coarser q values
of 1.0, 0.5, and 0.25, when applying the subtrac-
tive dithering option. The vertical displacement
of these lines shows that the measurement errors
are systematically larger in the quantized images
as compared to the measurements in the original
image. This increase is relatively small for q >
1, but increases rapidly for coarser quantization
values.

Figure 5 shows a similar plot of the Standard
Deviation of the stellar centroid measurements, in
units of pixels, as a function of the magnitude of
the star and the q quantization factor. In the origi-
nal unquantized images, the positional uncertainty
decreases from a = 0.24 pixels for the m = 20
stars, to a = 0.035 pixels for the stars that are 3
magnitudes brighter. The positional measurement
uncertainties are larger in the quantized image by
about the same factor as the increase in the mag-
nitude uncertainties shown in Figure 4.

In order to better quantify the effects shown
in these 2 figures, Table 1 summarizes how the
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Fig. 4.— The effect of q on the measured magni-
tude uncertainties when dithering is applied.
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Fig. 5.— The effect of q on the measured posi-
tional uncertainties when dithering is applied.



noise and the measurement uncertainties increase
as the images are quantized more coarsely. The
percentage increase in the measured MAD noise

level in the quantized images is given in column 2
and agrees exactly with the predicted value from
equation 10. More strikingly, the magnitude and
position uncertainties for the faintest stars also in-
crease by about the same factor as the noise, as

shown in columns 3 and 4. This means that equa-
tion 10 also provides a good estimate of how much
the measurement uncertainties of the faintest ob-
jects in an image, which are limited by the back-
ground noise, will increase when the image is
quantized.

Finally, columns 5 and 6 in Table 1 give the
corresponding increase in measurement uncertain-
ties for stars that are 5 magnitudes, or a factor

of 100, brighter than the image detection thresh-
old. As expected, these brighter objects are rel-
atively less affected by quantization because the
inherent Poissonian noise in the brighter pixels is
larger than the spacing between the quantized lev-
els. Also, the small formal statistical errors on
the magnitudes and positions of the brighter stars
(which are less than 0.001 of a magnitude or pixel,
respectively, in this case) are often insignificant
compared to the systematic errors in the absolute
calibration of the measurements.

For comparison, we also measured the posi-
tion and magnitude uncertainties in images that
were quantized but without subtractive dithering.
These results are shown in Figures 6 and 7. It is
apparent from comparison with Figures 4 and 5
that the uncertainties in the undithered quantized
images are much larger than in the dithered case.
In order to achieve the same level of photometric
precision in this test, the undithered images must
be quantized by about a factor of 10 finer spacing
than in the dithered case, which greatly reduces
the resulting compression ratio of the image. As
was discussed previously in §2, one reason for this
difference is that dithering the pixel values has a
large effect on the measured background sky in-

tensity level. This is illustrated in Figure 8, which
shows the average difference between the magni-
tudes measured in the original image and in a q
= 0.5 quantized version of the same image. In the
non-dithered case, even stars that are 3 – 4 mag-

nitudes brighter than the detection threshold are

still significantly biased. Note that the amount of
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Fig. 6.— Same as Figure 4 but without dithering.
The magnitude uncertainties are much larger than
in the dithered case.
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TABLE 1

INCREASED NOISE AND MEASUREMENT UNCERTAINTIES AS FUNCTION OF Q

q aQf6o Ama92 Apos2 Amag5 Apos5

4 0.26% 0.31% 0.18% 0.10% 0.20%
2 1.04% 1.1% 0.93% 0.25% 0.83%
1 4.08% 5.6% 4.1% 1.7% 3.4%

0.5 15.5% 19% 15% 5.8% 12%

bias shown here depends on how closely the near-
est quantized level happens to lie to the true sky
level in the image.

The benefits of dithering are less pronounced
on the astrometric measurements, as can be seen
by comparing Figures 5 and 7. The non-dithered
image only needs to be quantized with about a
factor of 2 finer spacing to give the same positional
precision as in the dithered image.

3.3. Experiment 2: Co-added Images

The second experiment investigates how well
faint star images that are below the detection
threshold of a single image can be measured af-
ter co-adding many images together. To first or-
der, one would expect that the noise in the co-
added image will decrease by a factor equal to
the square root of the number of co-added im-
ages. For this experiment we co-added 250 star im-
ages, similar to those generated in the first exper-
iment, which should allow detection of stars that
are about 2.5 log 250 = 3.0 magnitudes fainter
than in the single images. We repeated this co-
adding experiment multiple times, using different
starting seed values for the random background
noise distribution, to generate a. total of 250 simu-
lated co-added star images in each of the 0.5 mag-
nitude bins. The magnitude and position of each
of these co-added stars were then measured with
the SExtractor program, just as in the first exper-
iment.

Figure 9 shows the results of the photometric
measurements in the co-added images. Other than
the fact that the lines in the plots exhibit more
statistical scatter, since they were derived from a
sample of only 250 star measurements in each 0.5
magnitude bin instead of 6250, these results are
very similar to the results from the single images

0.6

0
q = 0.5

W 0.4	 Not ditheredb

0.2

0
Dithered

20	 19	 18	 17	 16

Magnitude

Fig. 8.— Mean errors on the measured magni-
tudes of the fainter stars when coarsely quantizing
an image with q = 0.5, with and without dither-
ing. The large errors in the non-dithered case are
caused by systematic biases in the intensity mea-
surements of the sky background. The amplitude
of the errors shown here are only representative
of one specific case and depend on how closely
the nearest quantized background level (without
dithering) happens to match the true sky inten-
sity level in the image.
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Fig. 9.— The effect of q on the measured magni-
tude uncertainties in the sum of 250 images, with
dithering.
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Fig. 10.— Same as Figure 9, but without dither-
ing. Dithering the 250 individual images has little
effect on the precision of the magnitude measure-
ments in the summed image.

shown in Figure 4, after allowing for the expected
shift of the horizontal axis by 3 magnitudes. This
similarity confirms that the photometric measure-
ments in the co-added images have the same de-
pendence on q as in the individual images. In par-
ticular, it confirms that information about faint
stars that are well below the detection threshold
in a single image is still preserved in the quantized
images and can be detected after co-adding many
quantized images together.

We also confirmed that the astrometric preci-
sion in the co-added images shows the same de-
pendence on q as the measurements in the single
images. A plot of the positional uncertainty as a
function of magnitude (not shown here) is almost
identical to Figure 5, except for the 3 magnitude
shift of the horizontal axis.

Finally, Figure 10 shows the magnitude uncer-
tainties when the quantized images are not sub-
tractively dithered before co-adding them. Unlike
the case for single images (as compared in Figures
4 and 6), dithering has little effect on the pre-
cision of the photometry in the co-added image.
This is because the co-adding process effectively
introduces its own form of pixel dithering if the
quantized levels in the different images are ran-
domly offset with respect to each other. Thus,
there is little added benefit by also dithering the
pixel values within each image. Price-Whelan &
Hogg (2010) demonstrate an even more extreme
case where accurate photometry and astrometry
could be performed on a co-added sum of 1024
images, each quantized with q = 1/16 = 0.0625
without any dithering.

No dithering

q
0.25
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Fig. 11.— Sample region in one of the test im-
ages taken with the Isaac Newton Telescope at La
Palma. This shows about 10% of the total image
area.

3.4. Experiment 3: Real Astronomical
Images

In the third and final experiment we performed
tests on a set of real astronomical CCD images
to confirm the previous results on synthetic im-
ages. We used a sequence of 20 similar CCD
images that show a random distribution of faint
stars and galaxies taken with the 2.5-m Isaac
Newton Telescope at La Palma (Figure 11). All
the exposures were for 600 seconds through a V-
band filter with the same pointing on the sky
(12h51-, 26°24'). These images are publicly avail-
able through the virtual observatory portal at
http://portal-nvo.lioao.edu .

We performed 2 tests to measure the effects of
quantization on these images. In the first test we
quantized one of the images using q = 1 (with sub-
tractive dithering), by compressing it with fpack
and then uncompressing it again with (unpack.
As predicted by equation 6, the compression ratio
achieved by fpack on these images depends almost
entirely on the q value that is used. We then com-
pared the SExtractor magnitude measurements in
the original image to those derived from the quan-
tized image. Since we do not know the true mag-
nitudes of the stars in this image (unlike in the
experiments on the synthetic stars), we can only
compare the measurements of the stars in the 2

images, both of which have measurement uncer-
tainties. The background noise increased by 4.1 %,
from a = 22.79 in the original image to a = 23.73
in the quantized image, as predicted by equation
10. Also as expected, the statistical errors (as cal-
culated by SExtractor) on the magnitude measure-
ments in the quantized image increased by a sim-
ilar amount, 3.8% on average, over the same mea-
surements in the original image. The top panel of
Figure 12 shows the difference between the 2 mag-
nitude measurements for each star as a function of
the magnitude of the star. The lower panel shows
that the corresponding relative errors (the mag-
nitude difference divided by the statistical error
on that magnitude as calculated by SExtractor).
The RIMS value of all the relative errors is 0.37v;
The fact that this is much less than the ^ la that
one would expect when comparing the magnitudes
derived from 2 identical CCD images of the same
stars, confirms that quantizing the image with q
= I (which results in a compression ratio of 10)
has not introduced statistically significant photo-
metric errors.

In the second test we co-added the 20 CCD
images, before and after quantizing them with q
= 1, and then calculated the differences in the
measured magnitudes in the 2 co-added images.
The results, shown in Figure 13, are similar to
those in Figure 12, derived from a single image,
except that the faintest detected stars are now

2.51og 20 = 1.6 mag fainter, as expected from
co-adding 20 images. The RMS value of the rel-
ative errors shown in the lower panel is 0.34a in
this case, which again demonstrates that quantiz-
ing the images with q = 1 has not produced any
significant photometric errors, even in objects that
are fainter than the detection threshold in a single
image.

4. Summary and Discussion

The main purpose of this work has been to find
a more effective compression method for floating-
point astronomical images than is provided by the
lossless methods that are commonly used (such
as GZIP). These floating-point images typically
do not compress well with lossless algorithms be-
cause a large fraction of the bits in each pixel
value representation contain no significant infor-
mation and are effectively filled with uncompress-
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ible noise. We have adopted the method of elim-

inating some of this noise by quantizing the pixel

values into a set of discrete, linearly spaced inten-

sity levels, which are represented by scaled integer

values. The scaled integers can then be efficiently

compressed using the very fast Rice algorithm. In

order to make these compression techniques more

widely available, we have produced a pair of util-

ity programs called fpack and funpack that can be

used to compress any FITS format image.

For convenience, we define a quantization pa-

rameter, q, which is equal to the measured RMS

noise in background regions of the image divided

by the spacing between the quantized intensity

levels. Given a particular q value when quantizing

and compressing an image, one can calculate from

fundamental principles the expected image com-

pression ratio, as given by equation 6. Coarser

quantization (i.e., smaller q values) gives greater

image compression, but at the same time it in-

creases the RXIS pixel-to-pixel noise by an amount

given by equation 10 which also tends to degrade

the precision of the magnitude and position mea-

surements of the objects in the image.

Our series of experiments on simulated and on

real astronomical CCD images demonstrate that

the noise equation 10 also gives a good estimate

of the increase in measurement uncertainties for

objects near the detection threshold in a quan-

tized image (which are noise limited). For many

practical applications, q values between 1 and 4

provide a good combination of high compression

and low increased noise: q = 1 gives a compres-

sion ratio of about 10 while increasing the noise

and the measurement uncertainties by about 4%,

and q = 4 gives a compression ratio of 6 with a

negligible 0.26% increase 
in 

the noise and mea-

surement uncertainties. In 'quick-look' t
y
pes of

applications, where high scientific accuracy is not

of primary importance, even greater compression

can be obtained by using q values less than 1.

One necessary requirement for achievin g these

results, however, is that the pixel values must be

dithered during the quantization process to im-

prove the signal-to-noise in measurements of faint

signals in the image. Without dithering, the faint

areas of coarsely quantized images tend break up

into broad plateaus of constant intensity, and it

becomes more difficult to detect the faintest ob-

jects in the image. In astronomical images this ef-
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Fig. 12.— Differences in star magnitudes mea-

sured in a CCD image and a q = I quantized ver-

sion of the same image. The upper panel shows

the absolute magnitude differences, and the lower

panel shows the relative differences after dividing

by the statistical error.
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Fig. 13.— Same as Figure 12, except the magni-

tudes are measured 
in 

the sum of 20 CCD images

and in the sum of the q = I quantized version of

each of the images.
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feet can seriously impact intensity measurements
of the local sky background which can lead to
systematic biases in photometric measurements in
the quantized image. In our experiments using
SExtractor, a dithered image can be quantized by
about a factor of 10 coarser than a non-dithered
image (thus resulting in a much higher compres-
sion ratio) while still preserving the same amount
of photometric precision.

Several other recent studies have reached sim-
ilar conclusions about the benefits quantizing as-
tronomical images to reduce the amount of noise
and improve the compression ratio. Price-Whelan
& Hogg (2010) performed photometric and astro-
metric measurements on stars in simulated CCD
images (using a slightly different methodology
than used here) and concluded that no significant
errors were introduced if the image is quantized
(without dithering) with q > 2. Bernstein et al.
(2010) found that using q = 1, along with square-
root scaling does not induce any significant bias
in weak-lensing shape measurements of galaxies
(i.e., the second statistical moment of the image)
in simulated images from future space-based imag-
ing missions. Caldwell et al. (2010) describe how
the Kepler mission is performing on-board quan-
tization of the images with q values as low as 1.15
to obtain the necessary amount of compression of
the downlinked telemetry while still preserving the
required high precision in the differential photom-
etry measurements of stars. While we recognize
that applying any sort of lossy compression scheme
to scientific data tends to go against the inclina-
tion of scientists and data archive professionals,
hopefully the results of the experiments performed
here and in the other cited references will help to
alleviate these concerns.

While we believe our test results should be ap-
plicable to a wide range of floatin g-point astro-
nomical images, we strongly encourage users to
perform their own tests to verify that this com-
pression technique is appropriate for their own
data. Users can easier create a quantized and
dithered version of any floating-point FITS image
by compressing it with (pack and then uncompress-
ing it with funpack. This image can then then be
processed just like the original image to see if there
are any significant differences in the results.
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